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We present a comprehensive study of the performance of fast scoring functions for library
docking using the program FlexX as the docking engine. Four scoring functions, among them
two recently developed knowledge-based potentials, are evaluated on seven target proteins
whose binding sites represent a wide range of size, form, and polarity. The results of these
calculations give valuable insight into strengths and weaknesses of current scoring functions.
Furthermore, it is shown that a well-chosen combination of two of the tested scoring functions
leads to a new, robust scoring scheme with superior performance in virtual screening.

Introduction

The need for fast and efficient discovery of new lead
compounds in pharmaceutical research makes it im-
perative to intelligently use all information accessible
for a target. Of special importance in drug discovery
programs are 3D coordinates of the target protein
obtained from X-ray structure analyses. This informa-
tion is available for a constantly increasing number of
targets, and it can be most efficiently exploited by
automated procedures that quickly and objectively test
the complementarity of many molecules with the target
binding site.1-4 Over the last years, small-molecule
docking programs5-10 have been established as enor-
mously valuable tools to narrow down the size of
compound libraries to the most promising candidates
with high success rates.11-15

Flexible docking programs are today able to predict
protein-ligand complexes with reasonable accuracy and
are fast enough to be routinely applied to databases of
some 104 compounds. The major weakness of docking
programs currently lies not in the docking algorithms
themselves but in the inaccuracy of the functions that
are used to estimate the affinity between receptor and
ligand, the so-called scoring functions.16-18 Scoring
functions are needed for two purposes: During the
docking process, they serve as fitness functions in the
optimization of ligand orientation and conformation, and
for comparison with other molecules they are used as
estimates of binding affinity for the completely docked
molecule. Although in principle different functions can
be used for these two purposes, in most applications the
same function has been used. Thus there are various
criteria for the quality of a scoring function: its ability
to identify the correct binding mode of a ligand out of
alternative docking solutions, its ability to rank related
ligands with respect to their binding affinity, and its
ability to select a number of (however weak) inhibitors
out of a large database of inactive compounds. Here we

will focus on the third criterion, which is the central
issue in virtual screening.

Scoring functions used in library docking must be very
fast and therefore invariably neglect many terms that
are part of the full thermodynamic cycle defining a
binding free energy in solution.19 In addition, they must
be error-tolerant, since fast flexible ligand docking
approaches crystallographic accuracy only for relatively
rigid ligands and in the absence of induced fit phenom-
ena. Given these limitations, scoring functions cannot
be expected to give accurate affinity predictions. Nev-
ertheless, they should recognize solutions displaying
good steric and electrostatic complementarity between
receptor and ligand and give lower ranks other solutions
with unlikely relative orientations of ligand and receptor
groups. Of central importance is a balanced description
of the two major driving forces of complex formation:
hydrogen bonds and hydrophobic interactions.

For the present study we have employed the docking
program FlexX8,20,21 as the docking engine. We had
observed earlier that the scoring function used so far
in FlexX has clear preferences for hydrogen-bonded
ligands and performs poorer with lipophilic binding sites
and ligands in virtual screening experiments. Here, our
goal is therefore to elucidate the strengths and weak-
nesses of alternative fast scoring functions. We have
selected representatives of two classes of scoring func-
tions: empirical and knowledge-based scoring functions.
Empirical scoring functions17 try to capture those ele-
ments of binding free energy that are intuitively deemed
important by a sum of terms - mainly hydrogen bond,
contact surface, and entropic contributions - whose
relative weights are either derived by fitting to experi-
mental data or by physical reasoning. Knowledge-based
functions are derived from statistical analysis of protein-
ligand atom pair distances in X-ray structures of
protein-ligand complexes. Generally applicable func-
tions of this type have only been developed recently22-24

and have only partially been tested for virtual screening.
An unbiased assessment of scoring functions is only

possible if results for a variety of different targets are
compared that cover a wide range in size, form, and
polarity of their binding sites and ligands. Therefore,
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we have selected seven targets of high pharmaceutical
relevance that represent different classes of enzymes
and that differ substantially in their active sites. The
ability of the scoring functions to select known inhibitors
out of a random library of “drug-like” compounds is
compared and analyzed. Potential benefits from con-
sensus scoring with pairs of these scoring functions are
discussed. Finally, the knowledge gained from this
analysis is used to optimize the combination of two
individual scoring functions to a new and general
scoring scheme that is of superior performance in virtual
screening.

Materials and Methods

In this section, we give details of ligand and target data
preparation, briefly outline the scoring functions used in this
study, and describe modifications to the FlexX docking soft-
ware and the setup of the docking calculations.

Preparation of Docking Libraries. Sets of inhibitors of
seven well-established pharmaceutical targets listed in Table
1 were compiled manually from Roche therapeutic project
databases and public sources such as the PDB database25 and
review articles. Our main selection criterion was to cover as
many different compound classes as possible for each target
to establish structural diversity among the inhibitors. For all
targets, inhibitors activities ranged from low-micromolar to
nanomolar affinity. All compounds were stored as SMILES36,37

and converted to single 3D conformations in Sybyl mol2
format38,39 by means of CORINA.40,41 Protonation states were
adjusted to generate the structure most likely to be dominant
at neutral pH. This was done by a C routine that adds or
deletes hydrogen atoms on the CORINA-generated 3D struc-
ture according to approximate pKa values calculated by the
program pKalc.42

A subset of the WDI database43 was prepared by removal
of compounds with molecular weights greater than 800 or less
than 200. Furthermore, compounds with saturated carbon
chains longer than 7 carbon atoms, without at least 1 oxygen
and 1 hydrogen atom, or containing elements other than C,
N, O, P, S, and halogens were removed. The remaining WDI
compounds were clustered according to Daylight fingerprint
similarity by means of the Jarvis-Patrick algorithm44 as
implemented in the Daylight toolkit45 considering the 14
nearest neighbors and requiring at least 8 cluster members
per cluster. One compound per cluster was selected, resulting
in a database of approximately 10 000 compounds. Further
selection steps included the removal of macrocycles with larger
than 12-membered rings (they are not handled flexibly in
FlexX), approximately 70% of molecules with a steroid-type
scaffold (because they were over-represented in the 10 000-
compound subset), and molecules with more than 13 pharma-
cophore centers as determined by a Roche in-house program.46

This step essentially served to remove large molecules with
many polar functional groups. The groups of active molecules
in Table 1 all passed this filter. The final size of the database
was 7528 compounds, which were stored as a SMILES list and
converted to Sybyl mol2 format by means of CORINA. Pro-
tonation states were corrected as described above.

Preparation of Target Structures. For each of the seven
targets, coordinates of protein crystal structures were retrieved

from the PDB or the Roche in-house structure collection.
Binding pockets were defined manually by means of the
interactive modeling program MOLOC developed at Roche. For
thrombin, the PDB complex 1dwd was selected and the water
molecule adjacent to Tyr 228 in the S1 pocket included as part
of the active site. For gelatinase A, the only available X-ray
structure was that of a proenzyme mutant (1ck7). Since only
minor structural changes can be expected upon complexation
and the active site region can be well-superimposed onto other
MMP structures, the structure was used in an “in silico
activated” form: The N-terminal propeptide was removed and
residue 404 mutated to glutamic acid as in the wild-type
enzyme. For the estrogen receptor, the PDB structure 1err was
selected, which displays the open conformation of the enzyme
that can accommodate both agonist and antagonist ligands.
For the remaining four targets, unpublished structures solved
at Roche were chosen (complexed with Roche inhibitors:
neuraminidase, RO-33-0721; gyrase B, RO-60-1034; p38 MAP
kinase, RO-115-3528; cyclooxygenase 2, RO-110-3472).

Scoring Functions. The standard scoring function used
in FlexX8 is a modified version of the empirical scoring function
by Boehm.47 It can be written as a sum of five contributions:

where the ∆Gi are coefficients of functions Fi operating on the
protein and ligand coordinates. ∆Gmatch is a sum of scores for
directed interactions between receptor and ligand. It consists
of individual energy contributions for each hydrogen bond,
metal contact, and specific aromatic interaction multiplied by
two linear penalty functions for angle and distance deviations
from predefined ideal values.47 The original Boehm and the
default FlexX match energy put additional weight on charged
hydrogen bonds by means of a scaling factor of 1.667 per
charged hydrogen bond partner, provided that the partial
charge of the participating ligand atom is above a given
threshold. In the present study, this factor was omitted, since
according to our experience it has negligible effect on structure
prediction and can lead to many false positives in virtual
screening experiments because of the large individual score
contributions for an individual charged interactions. Neglect-
ing the charge factor was detrimental in the case of specific
metal-ligand interactions only. For these, the interaction
energy was therefore increased from -2.35 to -3.5 to com-
pensate for the loss of the charge factor. The terms Flipo and
Fambig provide a measure of hydrophobic contact surface as
functions of receptor-ligand atom pairs, Flipo involving only
pairs of unpolar atoms and Fambig involving pairs of one polar
and one unpolar atom. Finally, Fclash is a penalty function for
protein-ligand overlap, and nrot is equal to the number of
rotatable bonds in the ligand times a weighting factor. The
term ∆Grotnrot was originally intended as a measure of the
entropic cost of freezing intramolecular degrees of freedom in
the ligand upon complexation,but, in virtual screening, mainly
serves to suppress the dependence of the score on the molec-
ular weight. The third empirical scoring function employed
here is PLP, a simple four-parameter potential that is a
piecewise linear approximation of a potential well for hydrogen
bonds and lipophilic interactions without angular terms.48 The
latest version of the PLP potential49 including a crude hydro-
gen bond directionality term was not available to us at the
time this study was performed.

Two recently published knowledge-based scoring functions
were included in this study: DrugScore by Gohlke et al.24 and
PMF by Muegge and Martin.22 DrugScore was used as a
standalone executable supplied by the authors. PMF was
implemented according to the original publication and discus-
sions with the author. The original PMF had performance
problems in docking applications due to the fact that several
pair potentials were repulsive already at relatively long
interatom distances. In this study we used a modified param-
eter file (I. Muegge, unpublished results), in which minima
have been extended toward shorter distances and a van der
Waals repulsive potential is used at short distances.

Table 1. Number and Origin of Active Compounds Used in
This Docking Study

no. of compds target origin

128 cyclooxygenase-2 refs 26-28
55 estrogen receptor refs 29-31
72 p38 MAP kinase Roche, ref 32
36 gyrase B Roche
67 thrombin refs 33, 34
43 gelatinase A and general MMP WDI, PDB, ref 35
51 neuraminidase PDB, Roche

∆Gbind ) ∆GmatchFmatch + ∆GlipoFlipo + ∆GambigFambig +
∆GclashFclash + ∆Grotnrot
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In their original form, PLP, DrugScore, and PMF are sums
of protein-ligand atom pair contributions. This naturally
makes the score dependent on the size of the molecule. In
FlexX, size dependence is reduced through the rotatable-bonds
penalty term described above. The number of rotatable bonds
is roughly proportional to molecular size for many “drug-like”
compounds. The rotatable-bonds penalty term (definition of
“rotatable” according to Boehm)47 was used for all scoring
functions, albeit with different coefficients of +3.0 for PLP and
PMF and +14000 for DrugScore instead of +1.4 in the FlexX
function. These coefficients reflect the different scales of the
scoring functions relative to the FlexX scores and were derived
from regression analyses of docking results on several targets.
They are chosen such that they remove any statistical depen-
dence of docking results on molecular size measured in terms
of numbers of atoms or rotatable bonds. Inclusion of the
rotatable-bonds term effectively improves the performance of
PLP, DrugScore, and PMF in virtual screening experiments
and facilitates comparison with FlexX results.

The combination scoring function ScreenScore was derived
from PLP and FlexX score contributions in the following way:
The FlexX implementation of the PLP scoring function (see
next paragraph) was used such that all protein-ligand atom
pairs already covered by Fmatch term of the FlexX function were
excluded from the PLP pair contributions. Since docking more
than 7500 compounds in seven binding sites for many different
combinations of score terms could not be afforded, the docking
run was performed once with the original FlexX scoring
function as a fitness function. For each docked compound, a
table with FlexX and PLP score contributions was generated
for all (up to 800) solutions. Various combinations of PLP and
FlexX scores could then quickly be tested by means of these
tables. Each new combined scoring function was first used to
select the best solution per compound and then for database
ranking. The optimization process involved more than 26
million docking solutions for about 50 000 docked compounds.
We used an interactively guided systematic optimization
scheme with the goal of achieving good enrichment for all
targets instead of peak performance for few targets. First, only
combinations of Fmatch and the match-excluded PLP term (FPLP)
were tested. In a second step, the best fixed-ratio combinations
of Fmatch and FPLP were combined with Flipo and/or Fambig

contributions. Finally, the optimum value of ∆Gnrot was
determined for the best overall combinations. The final func-
tion has the form:

Docking Software. All docking calculations were per-
formed with FlexX version 1.9.2, which contains a number of
enhancements and new features with respect to virtual
screening which should be briefly described here.50 For efficient
handling of large compound databases, a parallel version
named FlexX-PVM was developed. FlexX-PVM, based on the
PVM (parallel virtual machine) library,51,52 is able to run in
parallel on heterogeneous hardware environments. To ac-
complish this, an automatic scheduling system was developed
distributing individual protein-ligand docking calculations on
the available processors. The scheduling system is robust and
allows for stopping and restarting of screening calculations
and reconfiguration of the hardware setup during the screen-
ing calculation. The scheduler automatically handles defective
ligand data and system failures of individual processors. Due
to an automatic output file merging, the same output files are
created in a parallel run as in a sequential run.

Frequently, the compound database used for virtual screen-
ing is created from 2D information with a 3D structure
generator. The question arises which enantiomer should be
generated for the docking calculation. To avoid time-consuming
generation and individual docking of all enantiomers, we
extended the definition of degrees of freedom within FlexX to
stereocenters. FlexX differentiates between three kinds of
stereocenters: pseudo-R/S (3-bonded, pyramidal nitrogens),
R/S, and Z/E, which can be handled as additional degrees of

freedom during the docking calculation. FlexX then automati-
cally generates the stereoisomer with the best fit to the active
site. Since in this study all enantiomers of active compounds
were known, this feature was not used here.

Concerning scoring, FlexX was extended in various ways.
First, all parameters of the FlexX scoring function including
the functional form for the lipophilic and ambiguous contact
terms as well as the hydrophobicity definition can be modified
externally. Second, we integrated the PLP48 function into
FlexX. Here, the only difference to the original implementation
is that halogen atoms are not disregarded but treated as
lipophilic atoms. Terms of the three scoring functions can be
arbitrarily weighted and combined in FlexX. Furthermore, the
user can specify for each term whether it should be used in
the complex construction phase or for scoring the final solu-
tions.

An additional feature used throughout this study is a
conformation filter developed at Roche. During the incremental
construction of docking solutions, the filter removes poses
displaying strongly repulsive 1,5-interactions along flexible
chains of the ligand. In FlexX, during each incremental
construction step, the conformation space of the single bond
formed in the previous step is explored. To generate low-energy
conformations, the MIMUMBA torsion angle library53,54 is
used. Since in this procedure only one rotatable bond is
regarded at a time, high-energy conformations can still result
from unfavorable combinations of two dihedral angles along
a chain.55 The intramolecular clash terms are too crude to
prevent the generation of such conformations. The new filter
detects these conformations - either planar (sp,sp) or syn-
pentane-type (sc+,sc-) arrangements - and eliminates those
which are associated with at least 2 kcal/mol of strain energy.
Thus the filter increases the quality of FlexX conformations
along flexible chains. It has a positive effect on structure
prediction performance in that it helps to focus the conforma-
tional search on low-energy structures.

Docking Procedure. For each target, the corresponding
set of inhibitors was combined with the WDI subset. The
combined library was docked into the target active site using
the default FlexX parameter settings contained in the FlexX
distribution. The main settings are 800 solutions per iteration
during the incremental construction algorithm and a maxi-
mum protein-ligand atom-atom overlap of 2.5 Å3. Calcula-
tions were run in parallel on 16 SGI R12k 400-MHz processors
with an average wall clock run time of 52 s/molecule. Final
scores were calculated for all FlexX solutions (up to 800) per
compound. In this way each of the alternative scoring functions
was given the freedom to pick a different best solution per
compound, whose score value was used for database ranking.
Compounds for which no docking solutions could be obtained
(on average 6% of the WDI set) were appended to the sorted
rank list in arbitrary order.

Results and Discussion

Individual Performance of Scoring Functions.
Figure 1 shows the enrichment of inhibitors obtained
with four scoring functions for each of the seven targets.
The accumulated percentage of inhibitors contained in
the top X% of the ranked database is plotted. Note the
logarithmic scale on the x-axis expanding the most
important region of the plots from 1-10% of the
database.56 Targets in Figure 1 are roughly ordered in
increasing order of the polarity of the binding sites.

The FlexX scoring function performs best for those
target-ligand combinations that form a significant
number of hydrogen bonds, i.e., p38 MAP kinase,
thrombin, gelatinase A, and neuraminidase. In throm-
bin, most known inhibitors form salt bridges to Asp 189
at the bottom of the S1 pocket and also to Gly 216. These
receive high ranks with the FlexX scoring function,
whereas inhibitors placing lipophilic groups into the S1

∆Gbind ) Fmatch + 0.07(Flipo + Fambig) + 0.3FPLP + 1.6nrot
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pocket, such as 1 (Figure 2), receive very low ranks
although the complex structure is reasonably well-
predicted. Gelatinase A has a valley-shaped binding site
with a deep S1′ pocket, which can accommodate lipo-

philic groups as large as biphenyl moieties. The active
site is flanked on either side by â-strands allowing for
hydrogen bonds to the ligand. These interactions and
contacts of inhibitor carboxylate or hydroxamate groups
with the catalytic zinc atom result in high ranks once
the inhibitors are correctly placed. It is not surprising
that only the FlexX function is able to significantly
enrich gelatinase A inhibitors, since it is the only one
taking metal-ligand interactions into account in an
explicit manner. The binding site of p38 MAP kinase is
a narrow lipophilic cleft that accommodates planar
conjugated systems in the adenine binding region. One
rim of the adenine binding pocket is formed by the
“hinge” strand. Inhibitors invariably form a hydrogen
bond to the NH group of Met 109 in the hinge and
frequently another hydrogen bond to a flanking carbonyl
group. FlexX again assigns the highest ranks to those
inhibitors that form more than one hydrogen bond to
the protein. As a point in case, consider the inhibitors
2 and 3, which are of similar size and shape and adopt
the same type of binding mode. Compound 2 is on rank
196, while compound 3 is on rank 69 in the FlexX rank
list. The estrogen receptor is a large steroid-size lipo-
philic cavity with acceptor groups at either end that can
form hydrogen bonds with ligand hydroxyl groups, for
example, as present in the agonist 4 and antagonist 5.
For both agonists and antagonists, lipophilic interaction
energies largely determine the binding energy, but most
antagonists form an additional salt bridge to Glu 351.
Antagonists are ranked highly by FlexX, while agonists
are not. The COX-2 binding site is a narrow, completely
buried lipophilic cavity. Hydrogen bond formation is not
a predominant feature of inhibitor binding, although
most known inhibitors, exemplified by compound 6,
have a sulfonamide group forming hydrogen bonds to
various residues (Gln 192, His 90, Phe 518). The FlexX
scoring function is not very effective at enriching
inhibitors for COX-2, because many docking solutions
of WDI compounds display spurious hydrogen bonds,
which nevertheless contribute much to the score and
lead to high ranks.

Results for the PLP function differ considerably from
the FlexX scoring results. Its different functional form

Figure 1. Enrichment of inhibitors for seven targets calcu-
lated with four scoring functions. The legend in the lower right-
hand corner pertains to all seven panels.

Figure 2. Individual inhibitors discussed in the text: thrombin inhibitor with a lipophilic S1 binding moiety (1), p38 MAP
kinase inhibitors (2, 3), agonist (4) and antagonist (5) of the estrogen receptor, and COX-2 inhibitor (6).
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- no directionality, broad minima - makes the score
less dependent on hydrogen bonds and pronounces
general steric fit. Thus it is understandable that the
PLP potential performs significantly better for COX-2
but significantly worse for neuraminidase. Also, it is
striking that PLP is the only scoring function that
performs well for gyrase B. In gyrase B an ATP binding
site is targeted like in the p38 MAP kinase, but the
cavity is more shallow and inhibitors occupy only a
fraction of it.

On average, the two knowledge-based scoring func-
tions perform worse than PLP and FlexX. In general it
seems that DrugScore can model lipophilic interactions
well (COX-2) but fails completely when mainly hydrogen
bond interactions count (neuraminidase). A positive
feature of DrugScore is the observation that it ranks a
considerable number of agonists among the top 10% of
the database for the estrogen receptor. Furthermore,
DrugScore is the only function to give a relatively high
rank (247) to thrombin inhibitor 1 for a docking solution
that indeed places the chlorinated phenyl ring in the
S1 pocket. On the contrary, PMF outperforms all other
functions for neuraminidase but performs poorly in
those cases where inhibitors must be fit into relatively
narrow cavities. It is difficult to point out the reasons
for these observations, since knowledge-based scores are
not easily interpretable. However, an obvious weakness
of PMF is the fact that many of its carbon-nitrogen and
carbon-oxygen pair potentials are strongly repulsive at
distances between 3 and 4.5 Å, a situation that results
from combined sampling of directed and undirected
interactions in crystal structures and combining these
statistics in an undirected pair potential. This leads to
repulsive interactions, e.g., for phenyl rings located close
to amide bonds, e.g., as is the case in benzamidines
binding to the thrombin S1 pocket. It should be noted
that the observed weak performance of PMF in library
ranking does not contradict its demonstrated usefulness
in structure prediction or for Ki prediction.57-59 Finding
a correlation among a set of related compounds is a
completely different task than ranking a set of com-
pletely unrelated compounds.

One might argue that the above results are somewhat
biased by the use of the FlexX scoring function as the
fitness function for the generation of ligand placements.
To address this issue, we have minimized docking
solutions for all targets with the PLP and PMF scoring
functions using a simplex minimizer.60 The enrichment
curves obtained in this way for PLP and PMF are very
similar to the ones in Figure 1 and lead to the same
conclusions (results not shown).

Consensus Scoring. Each of the four scoring func-
tions has strengths and weaknesses. To increase the
success rate in virtual screening, it may therefore be
advisable to use several scoring functions. For the
combination of results from different scoring functions,
a method called “consensus scoring” has recently been
proposed,61 in which only those compounds are regarded
that receive high ranks with two or more scoring
functions. A considerable reduction of false positives has
been reported with this method. Table 2 shows results
for pairwise combination of the four scoring functions
discussed individually above. Each table entry consists
of three numbers: Ctot is the total number of compounds

common to the top 5% of two rank lists; Cact is the
number of active compounds contained therein; Iact is
the number of active compounds one would have ob-
tained, if one had selected the top ranking Ctot com-
pounds of the better individual scoring function. Con-
sensus scoring is successful when the number of false
positives is reduced more significantly than the number
of active compounds and when Cact is greater than Iact.

From Table 2 it can be seen that consensus scoring
is generally successful when two scoring functions are
combined that perform well individually. For example,
the combination of PLP and FlexX for p38 MAP kinase
results in 121 common molecules or less than one-third
of the top 5% of (381) compounds of either rank list,
whereas the number of active compounds decreases to
about two-thirds, from 48 to 30. However, for many
combinations, Iact is higher than Cact, because most
active compounds are concentrated at the very top of
the rank files. In other words, if one knew in advance
which scoring function works better for a given target,
better performance can be achieved by using this
function alone and concentrating on the highest ranking
compounds only. In practice, however, consensus scoring

Table 2. Results from Consensus Scoring with Pairs of Four
Published Scoring Functionsa

FlexX PLP DrugScore PMF

Ctot Cact Iact Ctot Cact Iact Ctot Cact Iact Ctot Cact Iact

COX-2
FlexX 382 23
PLP 149 22 33 382 44
DrugScore 93 16 13 169 30 34 382 37
PMF 54 2 7 116 7 29 120 6 10 382 8

Estrogen Receptor
FlexX 379 26
PLP 184 25 22 379 28
DrugScore 129 20 21 181 22 21 379 25
PMF 112 22 21 180 25 22 156 21 21 379 29

p38 MAP Kinase
FlexX 381 48
PLP 121 30 20 381 48
DrugScore 100 16 19 195 18 30 381 23
PMF 84 16 19 159 19 24 141 11 12 381 30

Gyrase
FlexX 378 8
PLP 111 7 12 378 18
DrugScore 66 4 3 129 7 12 378 10
PMF 52 5 5 71 7 8 88 4 7 378 10

Thrombin
FlexX 379 45
PLP 184 31 36 379 34
DrugScore 117 24 26 174 18 19 379 25
PMF 52 5 14 95 4 12 114 5 6 379 6

Gelatinase A
FlexX 378 23
PLP 116 6 9 378 6
DrugScore 89 6 6 212 4 3 378 7
PMF 50 4 3 89 2 1 88 3 1 378 5

Neuraminidase
FlexX 379 25
PLP 73 4 3 379 5
DrugScore 28 2 1 148 1 4 379 2
PMF 93 23 12 94 5 12 84 2 12 379 44

a Ctot is the total number of molecules common to the top 5% of
both rank lists; Cact is the number of active compounds contained
therein; Iact is the number of active compounds among the Ctot top
ranking molecules of the better of the compared scoring functions.
Diagonal elements are combinations of each scoring function with
itself, where Ctot is the number of molecules in the top 5% of the
database. This varies because the number of inhibitors was
different for each target (Table 1).
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offers more robust results than an individual scoring
function. The best general combination is FlexX score
and PLP score. We have also investigated the use of
three scoring functions instead of two for consensus
scoring, but we observed a significant loss of inhibitors
in most cases.

Increased Performance through a Combination
of Scoring Terms. Even though consensus scoring is
a viable approach to increase the efficiency in virtual
screening, it is desirable to cover many targets with a
single robust scoring function. None of the four scoring
functions discussed here performs satisfactorily for all
seven targets. Rather, it seems that pairs of scoring
functions are complementary to each other. Therefore
we sought to find a combination of scoring function
terms that would lead to better overall performance
rather than peak performance in a few individual cases.
It seemed reasonable to combine the localized and
directed FlexX hydrogen bond contributions with the
ability of PLP to model lipophilic interactions with a
simple pair potential approach. The final combined PLP-
FlexX combination, which we will call ScreenScore in
the following, has the form:

The lipophilic term is thus dominated by the PLP
contribution, while the FlexX lipophilic contribution
(Flipo and Fambig), being a short-range term, merely
stresses surface complementarity. The optimal ∆Grot
coefficient is slightly larger than the original FlexX
value of 1.4, which reflects the larger absolute score
values calculated with ScreenScore. ScreenScore con-
tains no contribution from the FlexX clash penalty
function Fclash. In Figure 3, ScreenScore is compared
with its two ancestors. Its performance is good for all
seven targets, whether polar or nonpolar, and in some
cases even higher than that of either FlexX or PLP
alone. It does not reach the high enrichment for COX-2
or gyrase B that is obtained with PLP or the high
enrichment of gelatinase A inhibitors obtained with
FlexX at the top 2% of the database, but it successfully
balances the properties of FlexX score and PLP score.

ScreenScore certainly does not solve all the problems
of fast scoring functions. For example, a compound

forming two hydrogen bonds to the receptor still tends
to get a better score than a similar compound forming
only one hydrogen bond, even though this may not
reflect reality in all situations. Such spurious behavior
can only be removed by a more detailed - but also more
CPU-intensive - treatment of hydrogen bonds and
electrostatic effects.

Database rankings discussed up to this point were
calculated by rescoring docking solutions generated with
the FlexX scoring function. We have also tested Screen-
Score as a combined fitness and scoring function.
Overall results remain comparable: Enrichment of
inhibitors in the top percentiles of the database drops
by about 5-10% for the polar targets neuraminidase,
gelatinase A, and gyrase, while for thrombin and p38
MAP kinase it rises by the same amount. For COX-2
and the estrogen receptor, changes are minimal. These
results may be explained by the fact that the PLP
potential itself is a softer, more error-tolerant function
and introduction of any component of PLP into the
fitness function will lead to a solution set that satisfies
directed interactions less than the FlexX score itself. For
polar targets this will lead to some more lipophilic
compounds receiving better scores and thus higher
ranks than before. Interestingly, when applied as a
fitness function on a previously published set of 200
protein-ligand complexes from the PDB,62 ScreenScore
is slightly superior to the original FlexX score (Figure
4) but still inferior to DrugScore, which was tested on
a subset of these 200 complexes.24

Although the performance of ScreenScore is an im-
provement in both structure prediction and virtual
screening, the above findings show that it generally
makes sense to separate fitness and scoring functions
from each other. This allows for exaggerating specific
binding phenomena such as hydrogen bonds and metal
interactions in the docking phase and reducing their
weight in the final scoring phase. Such a strategy is in
accord with the docking approach realized in FlexX,
which focuses on specific interactions throughout the
docking phase.

Figure 3. Comparison of the FlexX and PLP scoring functions
with the FlexX-PLP combination ScreenScore. For each target,
the left column of the triplet shows FlexX results, the middle
column PLP results, and the right column results calculated
with ScreenScore.

∆Gbind ) Fmatch + 0.07(Flipo + Fambig) + 0.3FPLP + 1.6nrot

Figure 4. Analysis of docking accuracy for 200 structures
from the PDB.62 The plot shows the numbers of compounds
docked better than a given root-mean-square deviation (rmsd)
threshold. “Best solution” means that the structure closest to
the X-ray structure was chosen regardless of its rank.
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Conclusions

We have tested the performance of four fast scoring
functions in seven virtual screening experiments and
showed that all four functions have specific shortcom-
ings that reduce their usefulness as general scoring
functions for database ranking. Particularly, some func-
tions are more suitable for lipophilic targets and others
for polar ones. We then showed that a combination of
elements of two scoring functions leads to significantly
higher performance than any of the individual functions.
An optimized combination of FlexX and PLP scoring
functions, called ScreenScore, successfully balances the
weight of undirected lipophilic interactions and directed
hydrogen bonds. In this study, we have used the original
FlexX scoring function to generate docking solutions for
each compound. This has proven to be a good choice,
since it was shown that emphasizing specific directed
interactions in the docking phase, as is done in FlexX,
can increase performance in virtual screening. Although
this study was performed with FlexX only, we anticipate
that the ScreenScore will prove to be a robust and
valuable scoring function in combination with other
docking engines as well.
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